0%

爬虫 | 反爬机制

这里总结了反爬虫所用到的技术。

我们在爬取网站的时候,经常会遇到各种各样类似加密的情形,比如说:

  • 某个网站的 URL 带有一些看不太懂的长串加密参数,要抓取就必须要懂得这些参数是怎么构造的,否则我们连完整的 URL 都构造不出来,更不用说爬取了。
  • 分析某个网站的 Ajax 接口的时候,可以看到接口的一些参数也是加密的,或者 Request Headers 里面也可能带有一些加密参数,如果不知道这些参数的具体构造逻辑就没法直接用程序来模拟这些 Ajax 请求。
  • 翻看网站的 JavaScript 源代码,可以发现很多压缩了或者看不太懂的字符,比如 JavaScript 文件名被编码,JavaScript 的文件内容都压缩成几行,JavaScript 变量也被修改成单个字符或者一些十六进制的字符,导致我们不好轻易根据 JavaScript 找出某些接口的加密逻辑。

这些情况呢,基本上都是网站为了保护其本身的一些数据不被轻易抓取而采取的一些措施,我们可以把它归类为两大类:

  • 接口加密技术
  • JavaScript 压缩、混淆和加密技术。

今天我们就来了解下这些技术的实现原理。


接口加密技术


数据一般都是通过服务器提供的接口来获取的,网站或 App 可以请求某个数据接口获取到对应的数据,然后再把获取的数据展示出来。

但有些数据是比较宝贵或私密的,这些数据肯定是需要一定层面上的保护。所以不同接口的实现也就对应着不同的安全防护级别,我们这里来总结下。

完全开放的接口

有些接口是没有设置任何防护的,谁都可以调用和访问,而且没有任何时空限制和频率限制。任何人只要知道了接口的调用方式就能无限制地调用。

这种接口的安全性是非常非常低的,如果接口的调用方式一旦泄露或被抓包获取到,任何人都可以无限制地对数据进行操作或访问。此时如果接口里面包含一些重要的数据或隐私数据,就能轻易被篡改或窃取了。

接口参数加密

为了提升接口的安全性,客户端会和服务端约定一种接口校验方式,一般来说会使用到各种加密和编码算法,如 Base64Hex 编码MD5AESDESRSA 等加密。

比如说客户端和服务器双方约定一个 sign 用作接口的签名校验,其生成逻辑是客户端将 URL Path 进行 MD5 加密然后拼接上 URL 的某个参数再进行 Base64 编码,最后得到一个字符串 sign,这个 sign 会通过 Request URL 的某个参数或 Request Headers 发送给服务器。服务器接收到请求后,对 URL Path 同样进行 MD5 加密,然后拼接上 URL 的某个参数,也进行 Base64 编码也得到了一个 sign,然后比对生成的 sign 和客户端发来的 sign 是否是一致的,如果是一致的,那就返回正确的结果,否则拒绝响应。这就是一个比较简单的接口参数加密的实现。如果有人想要调用这个接口的话,必须要定义好 sign 的生成逻辑,否则是无法正常调用接口的。

以上呢就是一个基本的接口参数加密逻辑的实现。

当然上面的这个实现思路比较简单,这里还可以增加一些时间戳信息增加时效性判断,或增加一些非对称加密进一步提高加密的复杂程度。但不管怎样,只要客户端和服务器约定好了加密和校验逻辑,任何形式加密算法都是可以的。

这里要实现接口参数加密就需要用到一些加密算法,客户端和服务器肯定也都有对应的 SDK 实现这些加密算法,如 JavaScript 的 crypto-js,Python 的 hashlibCrypto 等等。

但还是如上文所说,如果是网页的话,客户端实现加密逻辑如果是用 JavaScript 来实现,其源代码对用户是完全可见的,如果没有对 JavaScript 做任何保护的话,是很容易弄清楚客户端加密的流程的。

因此,我们需要对 JavaScript 利用压缩、混淆、加密的方式来对客户端的逻辑进行一定程度上的保护。


JavaScript 压缩


下面我们再来介绍下 JavaScript 的压缩混淆加密技术

这个非常简单,JavaScript 压缩即去除 JavaScript 代码中的不必要的空格、换行等内容或者把一些可能公用的代码进行处理实现共享,最后输出的结果都压缩为几行内容,代码可读性变得很差,同时也能提高网站加载速度。

如果仅仅是去除空格换行这样的压缩方式,其实几乎是没有任何防护作用的,因为这种压缩方式仅仅是降低了代码的直接可读性。如果我们有一些格式化工具可以轻松将 JavaScript 代码变得易读,比如利用 IDE、在线工具或 Chrome 浏览器都能还原格式化的代码。

目前主流的前端开发技术大多都会利用 Webpack 进行打包,Webpack 会对源代码进行编译和压缩,输出几个打包好的 JavaScript 文件,其中我们可以看到输出的 JavaScript 文件名带有一些不规则字符串,同时文件内容可能只有几行内容,变量名都是一些简单字母表示。这其中就包含 JavaScript 压缩技术,比如一些公共的库输出成 bundle 文件,一些调用逻辑压缩和转义成几行代码,这些都属于 JavaScript 压缩。另外其中也包含了一些很基础的 JavaScript 混淆技术,比如把变量名、方法名替换成一些简单字符,降低代码可读性。

但整体来说,JavaScript 压缩技术只能在很小的程度上起到防护作用,要想真正提高防护效果还得依靠 JavaScript 混淆和加密技术。


JavaScript 混淆


JavaScript 混淆是完全是在 JavaScript 上面进行的处理,它的目的就是使得 JavaScript 变得难以阅读和分析,大大降低代码可读性,是一种很实用的 JavaScript 保护方案。

JavaScript 混淆技术主要有以下几种:

变量混淆

将带有含意的变量名、方法名、常量名随机变为无意义的类乱码字符串,降低代码可读性,如转成单个字符或十六进制字符串。

字符串混淆

将字符串阵列化集中放置、并可进行 MD5 或 Base64 加密存储,使代码中不出现明文字符串,这样可以避免使用全局搜索字符串的方式定位到入口点。

属性加密

针对 JavaScript 对象的属性进行加密转化,隐藏代码之间的调用关系。

控制流平坦化

打乱函数原有代码执行流程及函数调用关系,使代码逻变得混乱无序。

僵尸代码

随机在代码中插入无用的僵尸代码、僵尸函数,进一步使代码混乱。

调试保护

基于调试器特性,对当前运行环境进行检验,加入一些强制调试 debugger 语句,使其在调试模式下难以顺利执行 JavaScript 代码。

多态变异

使 JavaScript 代码每次被调用时,将代码自身即立刻自动发生变异,变化为与之前完全不同的代码,即功能完全不变,只是代码形式变异,以此杜绝代码被动态分析调试。

锁定域名

使 JavaScript 代码只能在指定域名下执行。

反格式化

如果对 JavaScript 代码进行格式化,则无法执行,导致浏览器假死。

特殊编码

将 JavaScript 完全编码为人不可读的代码,如表情符号、特殊表示内容等等。

总之,以上方案都是 JavaScript 混淆的实现方式,可以在不同程度上保护 JavaScript 代码。


JavaScript 加密


不同于 JavaScript 混淆技术,JavaScript 加密技术可以说是对 JavaScript 混淆技术防护的进一步升级,其基本思路是将一些核心逻辑使用诸如 C/C++ 语言来编写,并通过 JavaScript 调用执行,从而起到二进制级别的防护作用。

其加密的方式现在有 Emscripten 和 WebAssembly 等,其中后者越来越成为主流。

下面我们分别来介绍下。

Emscripten

现在,许多 3D 游戏都是用 C/C++ 语言写的,如果能将 C / C++ 语言编译成 JavaScript 代码,它们不就能在浏览器里运行了吗?众所周知,JavaScript 的基本语法与 C 语言高度相似。于是,有人开始研究怎么才能实现这个目标,为此专门做了一个编译器项目 Emscripten。这个编译器可以将 C / C++ 代码编译成 JavaScript 代码,但不是普通的 JavaScript,而是一种叫做 asm.js 的 JavaScript 变体。

因此说,某些 JavaScript 的核心功能可以使用 C/C++ 语言实现,然后通过 Emscripten 编译成 asm.js,再由 JavaScript 调用执行,这可以算是一种前端加密技术。

WebAssembly

如果你对 JavaScript 比较了解,可能知道还有一种叫做 WebAssembly 的技术,也能将 C/C++ 转成 JavaScript 引擎可以运行的代码。那么它与 asm.js 有何区别呢?

其实两者的功能基本一致,就是转出来的代码不一样:asm.js 是文本,WebAssembly 是二进制字节码,因此运行速度更快、体积更小。从长远来看,WebAssembly 的前景更光明。

WebAssembly 是经过编译器编译之后的字节码,可以从 C/C++ 编译而来,得到的字节码具有和 JavaScript 相同的功能,但它体积更小,而且在语法上完全脱离 JavaScript,同时具有沙盒化的执行环境。

利用 WebAssembly 技术,我们可以将一些核心的功能利用 C/C++ 语言实现,形成浏览器字节码的形式。然后在 JavaScript 中通过类似如下的方式调用:

1
2
3
4
5
6
7
8
9
10
11
12
13
WebAssembly.compile(new Uint8Array(`
00 61 73 6d 01 00 00 00 01 0c 02 60 02 7f 7f 01
7f 60 01 7f 01 7f 03 03 02 00 01 07 10 02 03 61
64 64 00 00 06 73 71 75 61 72 65 00 01 0a 13 02
08 00 20 00 20 01 6a 0f 0b 08 00 20 00 20 00 6c
0f 0b`.trim().split(/[\s\r\n]+/g).map(str => parseInt(str, 16))
)).then(module => {
const instance = new WebAssembly.Instance(module)
const { add, square } = instance.exports
console.log('2 + 4 =', add(2, 4))
console.log('3^2 =', square(3))
console.log('(2 + 5)^2 =', square(add(2 + 5)))
})

这种加密方式更加安全,因为作为二进制编码它能起到的防护效果无疑是更好的。如果想要逆向或破解那得需要逆向 WebAssembly,难度也是很大的。

请我喝杯咖啡吧~