1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
| from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf
def weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.1); return tf.Variable(initial)
def bias_variable(shape): initial = tf.constant(0.1,shape=shape) return tf.Variable(initial)
def conv2d(x,w): return tf.nn.conv2d(x,w,strides=[1,1,1,1],padding='SAME')
def max_pool_2_2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') if __name__ == "__main__": x = tf.placeholder("float",shape=[None,784]) y_ = tf.placeholder("float",shape=[None,10]) w_conv1 = weight_variable([5,5,1,32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x,[-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image,w_conv1) + b_conv1) h_pool1 = max_pool_2_2(h_conv1) w_conv2 = weight_variable([5,5,32,64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2) + b_conv2) h_pool2 = max_pool_2_2(h_conv2) w_fc1 = weight_variable([7*7*64,1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1) + b_fc1) keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) w_fc2 = weight_variable([1024,10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) sess = tf.Session() sess.run(tf.initialize_all_variables()) mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(session=sess,feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0}) print("step %d,training accuracy %g"%(i,train_accuracy)) train_step.run(session = sess,feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5}) print("test accuracy %g" % accuracy.eval(session=sess,feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
|